Geometric Sequences

Determine if the sequence is geometric. If it is, find the common ratio.

1) -1, 6, -36, 216, ...

2) -1, 1, 4, 8, ...

3) 4, 16, 36, 64, ...

4) -3, -15, -75, -375, ...

5) -2, -4, -8, -16, ...

6) 1, -5, 25, -125, ...

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

7)
$$a_n = 3^{n-1}$$

8)
$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

9)
$$a_n = -2.5 \cdot 4^{n-1}$$

10)
$$a_n = -4 \cdot 3^{n-1}$$

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the explicit formula.

-1-

$$11) \ a_n = a_{n-1} \cdot 2$$
$$a_1 = 2$$

12)
$$a_n = a_{n-1} \cdot -3$$

 $a_1 = -3$

13)
$$a_n = a_{n-1} \cdot 5$$

 $a_1 = 2$

14)
$$a_n = a_{n-1} \cdot 3$$

 $a_1 = -3$

Given the first term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

15)
$$a_1 = 0.8, r = -5$$

16)
$$a_1 = 1$$
, $r = 2$

Given the first term and the common ratio of a geometric sequence find the recursive formula and the three terms in the sequence after the last one given.

17)
$$a_1 = -4$$
, $r = 6$

18)
$$a_1 = 4$$
, $r = 6$

19)
$$a_1 = 2$$
, $r = 6$

20)
$$a_1 = -4$$
, $r = 4$

Given a term in a geometric sequence and the common ratio find the first five terms, the explicit formula, and the recursive formula.

-2-

21)
$$a_4 = 25$$
, $r = -5$

22)
$$a_1 = 4$$
, $r = 5$

Given two terms in a geometric sequence find the 8th term and the recursive formula.

23)
$$a_4 = -12$$
 and $a_5 = -6$

24)
$$a_5 = 768$$
 and $a_2 = 12$

25)
$$a_1 = -2$$
 and $a_5 = -512$

26)
$$a_5 = 3888$$
 and $a_3 = 108$

Geometric Sequences

Determine if the sequence is geometric. If it is, find the common ratio.

1)
$$-1$$
, 6, -36 , 216, ... $r = -6$

4)
$$-3$$
, -15 , -75 , -375 , ... $r = 5$

5)
$$-2$$
, -4 , -8 , -16 , ... $r = 2$

6) 1, -5, 25, -125, ...
$$r = -5$$

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

7)
$$a_n = 3^{n-1}$$

First Five Terms: 1, 3, 9, 27, 81 $a_s = 2187$

8)
$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

First Five Terms: 2, $\frac{1}{2}$, $\frac{1}{8}$, $\frac{1}{32}$, $\frac{1}{128}$

$$a_8 = \frac{1}{8192}$$

9)
$$a_n = -2.5 \cdot 4^{n-1}$$

First Five Terms: -2.5, -10, -40, -160, -640
 $a_8 = -40960$

10)
$$a_n = -4 \cdot 3^{n-1}$$

First Five Terms: -4, -12, -36, -108, -324
 $a_8 = -8748$

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the explicit formula.

11)
$$a_n = a_{n-1} \cdot 2$$

 $a_1 = 2$

Common Ratio:
$$r = 2$$

First Five Terms: 2, 4, 8, 16, 32
Explicit: $a_n = 2 \cdot 2^{n-1}$

12)
$$a_n = a_{n-1} \cdot -3$$

 $a_1 = -3$
Common Ratio: $r = -3$
First Five Terms: -3 , 9, -27 , 81, -243

Explicit: $a_{n} = -3 \cdot (-3)^{n-1}$

13)
$$a_n = a_{n-1} \cdot 5$$

 $a_1 = 2$
Common Ratio: $r = 5$
First Five Terms: 2, 10, 50, 250, 1250

Explicit: $a_n = 2 \cdot 5^{n-1}$

14)
$$a_n = a_{n-1} \cdot 3$$

 $a_1 = -3$
Common Ratio: $r = 3$
First Five Terms: -3 , -9 , -27 , -81 , -243
Explicit: $a_n = -3 \cdot 3^{n-1}$

Given the first term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

15)
$$a_1 = 0.8, r = -5$$

First Five Terms: 0.8, -4, 20, -100, 500 Explicit: $a = 0.8 \cdot (-5)^{n-1}$

16)
$$a_1 = 1$$
, $r = 2$

First Five Terms: 1, 2, 4, 8, 16 Explicit: $a_n = 2^{n-1}$

Given the first term and the common ratio of a geometric sequence find the recursive formula and the three terms in the sequence after the last one given.

17)
$$a_1 = -4$$
, $r = 6$

Next 3 terms: -24, -144, -864 Recursive: $a_n = a_{n-1} \cdot 6$

18)
$$a_1 = 4$$
, $r = 6$

Next 3 terms: 24, 144, 864 Recursive: $a_n = a_{n-1} \cdot 6$ $a_{1} = 4$

19)
$$a_1 = 2$$
, $r = 6$

Next 3 terms: 12, 72, 432 Recursive: $a_n = a_{n-1} \cdot 6$

20)
$$a_1 = -4$$
, $r = 4$

Next 3 terms: -16, -64, -256 Recursive: $a_n = a_{n-1} \cdot 4$

Given a term in a geometric sequence and the common ratio find the first five terms, the explicit formula, and the recursive formula.

21)
$$a_{4} = 25$$
, $r = -5$

First Five Terms: -0.2, 1, -5, 25, -125Explicit: $a_n = -0.2 \cdot (-5)^{n-1}$ Recursive: $a_n = a_{n-1} \cdot -5$ $a_1 = -0.2$

22)
$$a_1 = 4$$
, $r = 5$

First Five Terms: 4, 20, 100, 500, 2500 Explicit: $a_n = 4 \cdot 5^{n-1}$ Recursive: $a_n = a_{n-1} \cdot 5$ $a_{1} = 4$

Given two terms in a geometric sequence find the 8th term and the recursive formula.

23)
$$a_1 = -12$$
 and $a_5 = -6$

 $a_8 = -\frac{3}{4}$

Recursive: $a_n = a_{n-1} \cdot \frac{1}{2}$ $a_1 = -96$

24)
$$a_5 = 768$$
 and $a_2 = 12$

 $a_{8} = 49152$

25)
$$a_1 = -2$$
 and $a_5 = -512$

 $a_{\circ} = 32768$ Recursive: $a_n = a_{n-1} \cdot -4$ $a_{1} = -2$

$$21) u_5 = 700 \text{ and } u_2 = 12$$

Recursive: $a_n = a_{n-1} \cdot 4$ $a_{1} = 3$

26)
$$a_5 = 3888$$
 and $a_3 = 108$

 $a_{\circ} = 839808$ Recursive: $a_n = a_{n-1} \cdot 6$ $a_{1} = 3$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com